Taking A Horizontal Leap Forward
A Proposal To Reform U.S. Communications Law Based On The Network “Layers” Framework

Richard S. Whitt
MCI Vice President for Federal Law and Policy
December 2004
Part I: What Exactly Is This Network “Layers” Concept?
Currently, U.S. laws and regulations are organized conceptually into vertical “silos”
In the (Current) Old Days....

- The U.S. legal superstructure has been organized in vertical “silos” around the presumed marriage of retail service, service provider, and underlying technology.
 - **The Communications Act of 1934**: establishes the “silos” paradigm, with differing legal obligations and rights based on service/provider classifications.
 - **Title II** – telephony common carriers (tariffs, service rates and terms, certification, nondiscrimination, interconnection and unbundling rules)
 - **Title III** – radio and television broadcasters, mobile service providers, and satellite service providers (licenses, facilities, spectrum rules)
 - **Title VI** – cable communications providers (local franchises, carriage requirements, public access channels, ownership restrictions)
 - **Title I** – “ancillary jurisdiction” (some deem to include information services)
 - **The FCC’s Computer Inquiry rules (1970s-present)**: a notable exception to the vertical approach, with unregulated “enhanced services” layered on top of regulated “basic services.”
 - **The Telecommunications Act of 1996**: silos redux.
Legal Fiction Versus Physical Reality

- Existing vertical “silos” fly in the face of several basic network design principles employed by engineers in the birth, growth, and success of the commercial Internet.

 - **The layering principle**: all data networks employ a common set of software-defined functional rules (or “protocols”), designed to create, transmit, and present packets of information to end users.
 - Physical transmission facilities operate at the “lower” layers of the data network.
 - Various interlinked software protocols operate at the “upper” layers of the data network.

 - **The “end-to-end” principle**: dumb networks ("the core") tend to support smart applications ("the edge").
 - In contrast, traditional telephone networks tend to employ smart switching infrastructure and dumb customer devices.
The Ubiquitous and Indifferent Nature of IP

- The Internet Protocol (IP) has become the common “bearer” protocol operating at the heart of the Internet and other modern-day data networks.
- An important design attribute of IP is its completely ubiquitous, indifferent nature.
 - IP is agnostic regarding bearer underlying networks.
 - IP is agnostic regarding bearing applications and content.
- IP helps create the “virtuous hourglass.”
 - Convergence at the IP (middle) layer
 - Divergence at the networks (lower) and services (upper) layers
 - The end result: what MCI calls “NetVergence”
- Thus, IP overturns fundamental assumptions that have governed the communications world for decades.
 - Presumed distinctions between different “services” break down.
 - IP-enabled services themselves no longer are tied to discrete networks, facilities, technologies, or providers.
 - Proliferation of smart applications is key to Internet’s success.
Why Use Layers?

Without the use of layering, each individual application must be re-implemented for every type of network technology.
Why Use Layers?

Inserting an intermediate layer provides a level of abstraction that makes the architecture much easier to manage.

Application
- Telnet
- HTTP
- DNS

Intermediate Layer

Transmission Media
- Fiber Optic
- Coaxial Cable
- Packet Radio
Communications System Layer Model

Content Layer
- Text, Speech, Music, Pictures, Video, etc.

Logical / Code Layer
- Application / Services
- Utility Protocol Layer
 - HTTP, SMTP, FTP, DNS, etc.
 - TCP, UDP
- Transport Layer
 - IP, ICMP, IGMP
- Network Layer
- Link Layer
- TCP / IP Protocol Suite
- Interface to the Physical Layer
- Ethernet, Modem, DSL, Cable, T1, Fiber Optics, Satellite, Bluetooth, Wi-Fi, etc.

Physical Layer
Compelling Links Between Networks and Regulation

Many well-respected industry authorities draw compelling links between the way IP networks are engineered, and how such networks should be analyzed and regulated.

- Larry Lessig
- Yochai Benkler
- Kevin Werbach
- Lawrence Solum
- Robert Entman
- Douglas Sicker
- David Isenberg
- Vint Cerf
- Timothy Wu
- Michael Katz
- Philip Weiser
- Rob Frieden
- Craig McTaggart
- John Nakahata
- Scott Marcus
- Michael Powell (?)
Advantages of a Layers-Based Public Policy Framework

Key advantages of a layered approach include:

- Relies on well-established and enduring network engineering principles;
- Avoids unsupportable static distinctions between services, networks, and providers;
- Appropriately separates upper layers (end user applications and content) from lower layers (physical and logical infrastructure);
- Groups and segregates pertinent public policy issues;
- Provides insights about interdependence of different layers, including interconnection between networks;
- Focuses on fostering greater competition to curtail pockets of market power within the layers; and
- Promotes and preserves maximum innovation at the “edge” of the network.
Some Key Principles

The following principles are key for policymakers to employ a robust and nuanced layers-informed framework:

- **Respect the integrity of the layers.**
 - Policymakers should not adopt layers-affecting regulations without at least (1) a compelling regulatory interest, and (2) consideration of layers-respecting alternatives.
 - Example: E-commerce issues (ISP liability)

- **Any regulation of layers activities should be narrowly-tailored.**
 - Policymakers should focus on the pertinent layers-related activities, and avoid regulating one layer to address perceived issues or problems situated in another layer.
 - Example: IP-enabled applications and services (VoIP)

- **Regulation should be used primarily to address areas of market concentration by fostering robust competition.**
 - Policymakers should combat the existence of market power in one layer by promoting competitive opportunities in that layer, and otherwise protecting end users in adjoining layers.
 - Example: Broadband platforms (DSL, cable modem)
MCI’s Proposed Layers Model

<table>
<thead>
<tr>
<th>Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content/Transactions Layer</td>
</tr>
<tr>
<td>Applications Layer</td>
</tr>
<tr>
<td>Logical Network Layer</td>
</tr>
<tr>
<td>Physical Network Layer</td>
</tr>
<tr>
<td>Transport</td>
</tr>
<tr>
<td>Access</td>
</tr>
</tbody>
</table>
Part II: How Can You Implement This Network “Layers” Concept?
“Operationalizing” the Layers Concept: A Continuum

- There are at least three ways for policymakers to put the horizontal layers concept into concrete and effective form.
 - **Principles**
 Agencies can adopt guiding principles.
 - **Rules**
 Agencies can adopt binding regulations.
 - **Laws**
 Legislators can adopt governing statutes.

- Each step can be pursued separately, or as part of a coordinated transition plan.
Adopting A Governing Federal Statute

- Working title: “The Internet Innovation and Broadband Competition Act of 2005”
 - Positioned as new “Title VIII” of Communications Act
 - Coexists with existing legal silos during period of market transition
- FCC directed to employ layers concepts:
 - As guiding principles (such as interpreting “public interest” test)
 - As binding rules (such as applying “forbearance” authority)
- Layers framework defined as a flexible conceptual guide
 - Physical, Logical, Applications, and Content layers
- Overarching principle: All entities generally are free to compete in and between the different network layers, without legal or regulatory constraints.
- Key legal dichotomy established:
 - IP Applications (generally unregulated)
 - Broadband Platforms (minimal carrier-like regulation)
Layers Analysis Supports Non-Telecom Regulation of VoIP

Traditional Telecom

Information Service

Telecommunications

Internet

Voice over IP

Voice

Transport

TCP

IP

Apps

TCP

IP

Transport

Voice

Apps
The Proposed Federal Legislation: IP-Enabled Applications and Services

- “IP-enabled applications, services, and content” would correlate roughly to “information services” under the Act.
 - VoIP is one of many IP-based applications, divorced from any particular technology platform or network.
 - No retail or wholesale common carriage (Title II) regulation, or other legacy requirements, generally would be permitted, including by State legislatures and State public service commissions.
 - To limit unnecessary and harmful regulatory role, the FCC’s “ancillary” jurisdiction under Title I would be defined narrowly as:
 - Requiring preemption of inconsistent state regulation; and
 - Authorizing imposition of certain public interest requirements (such as 911 and CALEA compliance) only where the IP service in question:
 - connects with the circuit-switched network, and/or
 - reasonably can be viewed as a commercial and functional substitute for existing voice telephony service.
Layers Analysis Supports DSL As Telecommunications Service

Internet Access over Dial-Up

Apps
TCP/IP
Voice
Transport

Internet Access over DSL

Apps
TCP/IP
Voice
Transport

DSL Transport

Traditional Telecom

Information Service

Telecommunications

Voice
Transport
The Proposed Legislation: Broadband Access Platforms

- “Broadband access platforms” would correlate roughly to “telecommunications services” under the Act.
 - DSL, cable modem service, and other broadband services fundamentally are communication transmission platforms.
 - The application layer retail service (high-speed Internet access) is separate from the underlying physical access layer (broadband platform).
 - Broadband access platforms would be exempt from many unnecessary Title II common carriage requirements, including all Federal and State retail regulation.
 - Remaining obligations would include network interconnection, simple resale, USF support, emergency services, CALEA, and access for disabled.
 - The FCC would be directed to facilitate multi-modal broadband competition.
 - Wireless (licensed and unlicensed), powerline, satellite options would be vigorously promoted.
 - Broadband access platforms with market power could be subject to discrete FCC remedy to protect dependent end users, such as:
 - Wholesale access requirement for ISPs (open access)
 - End user access rights (net neutrality)
 - Voluntary industry principles (Powell’s “Net freedoms”)
The Proposed Federal Legislation: Other Key Provisions

The FCC would be directed to:

- **Reform Intercarrier Compensation**
 - Phase out existing federal and state intercarrier compensation schemes, and adopt uniform, cost-based rates (presumably “bill and keep”) across all services and geographic boundaries.
 - Transfer any and all implicit subsidies to explicit universal service funds.

- **Strengthen Universal Service**
 - Extend Federal USF funding obligation to all broadband access platform providers.
 - Adopt contribution mechanism based on end user’s network connections.
 - Establish a new “universal broadband connectivity” program dedicated to supporting deployment of broadband access platforms in high-cost/rural regions of the country.

- **Preserve “Social Goods”**
 - Apply certain “public interest” requirements (such as emergency services (911), law enforcement (CALEA), and access for the disabled), to broadband access platforms, as well as to certain IP-based services.

- **Deregulate IP-Based Legacy Services**
 - Eventually remove existing regulatory burdens and benefits that apply to legacy services -- such as wireline and wireless voice telephony, cable television services, satellite services, and broadcast television and radio services – that begin running on IP.
Setting the Record Straight

While certain groups have criticized discrete elements of the MCI model, a layers-informed legal framework would further important public policy objectives by:

- offering a flexible, yet well-grounded, conceptual tool intended primarily to limit governmental intervention in the marketplace;
- posing the right kinds of questions for policymakers to ask, without necessarily dictating particular legal or policy outcomes;
- tending to lead to highly deregulatory policy conclusions;
- not seeking to disturb salient consumer and competitive benefits of entities’ vertical integration across different network layers;
- envisioning government’s primary role as preserving and enhancing competition and innovation, both at the network “edge” and between and among competing network platforms; and
- viewing excessive market concentration, defined under traditional antitrust principles, as the key factor in considering the need for possible economic regulation.
In Conclusion

- The network layers approach offers a compelling and workable alternative to the Communications Act’s outdated vertical “silos” structure.

- Congress should adopt a layered framework as it considers reform of the communications laws.
 - There should be a significant presumption against the imposition of unwarranted legal obligations and third party liability on content and application providers, and Internet service providers.
 - National policy should ensure that IP-enabled applications such as VoIP are not subject to common carrier regulation.
 - Comprehensive reform of existing carrier compensation and subsidy schemes is necessary to avoid imposing inequitable burdens on new IP-enabled technologies.
 - Full deregulation of all legacy retail services provided over IP networks -- voice, data, video -- may be warranted.
 - Broadband access platforms should be subject to minimal Title II carrier regulation, including possible consumer and/or ISP access rights where there is market concentration.

For copies of several white papers discussing MCI’s proposed network layers framework, visit: www.mci.com/publicpolicy